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Abstract. It is shown that a branch point appears in the critical surface of the Ashkin-Teller 
model at the point where this model reduces to a Potts model, and its relation with the eight- 
vertex model is discussed. An estimate for the critical exponent a of the Potts model is given. 

1. Introduction 

Recently the symmetric eight-vertex model has received much attention (Nauenberg 
and Nienhuis 1974, van Leeuwen 1975) in the renormalization group theory since its 
continuously varying exponents, arising (as conjectured by Kadanoff and Weger 197 1) 
from the existence of a line of fixed points, offer a special challenge to the theory. In 
this note a renormalization group study is made of the model of Ashkin and Teller (1943) 
which is in some sense closely related to the eight-vertex model and can in fact be 
identified with a more general so called ‘staggered’ eight-vertex model (Fan 1972, Wegner 
1972). However, it will be seen that the critical behaviour of the Ashkin-Teller model 
(ATM) differs from that of the normal eight-vertex model by the appearance of a branch 
point in the critical surface as a consequence of the existence of two transition tempera- 
tures in the ATM. This fact which was originally overlooked (Fan 1972) was also recently 
noted by Wu and Lin (1974). 

2. The Ashkin-Teller model 

The model under study here is in fact a special case of the ATM. Consider a square lattice 
having at every site a (two-dimensional) spin S which can point along the four directions 
of the coordinate axes. Define the Hamiltonian 

H = - 1  j J ( S , .  S,)+ K [ 2 ( S , .  Sj)’ - 11; (1) 

where ( i , j )  denotes summation over nearest neighbours. This model is an isotropic 
version of the ATM. The following facts are helpful in understanding some of the critical 
properties of the model. 

(i) If J = 0 the model reduces essentially to a two-component Ising model with 
spins that order either along the x axis or along the y axis; the model is critical for 

( i d  

e - 2 K  = 42-1 .  
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(ii) If  K = +E, only configurations with spins which are parallel or antiparallel 

(iii) One can represent the orientations of S by two Ising spins (0, T )  in the following 
remain, so that again an Ising model appears which is critical for e-*' = \/2 - 1. 

way: 0 = S , - S , ,  T = S , + S , .  Note that 

( S i .  Si) = $Jioj++sirj ,  

hence 

When K = 0, the model reduces to two independent Ising models with nearest-neighbour 
coupling 33 and a critical point at e-' = J 2 -  1. The coupling K couples the two Ising 
lattices (which can be pictured as a two-layered square lattice) with a four-body inter- 
action. The spin representation (Kadanoff and Wegner 1971, Wu 1971) of the eight- 
vertex model is also of the type of two Ising models coupled by a four-body interaction ; 
however, the topology of this interaction is different (Fan 1972). 

(iv) The energy levels of mutually orthogonal spins and those of antiparallel spins 
cross each other at the line K = 45 and the model reduces to a four-component Potts 
model (Potts 1952) with a critical point given by e-2J = 1 3. 

(v) There exists a symmetry under a duality transformation for the ATM (Mittag and 
Stephen 1971) which can be formulated in terms of the relative weights b = exp( - 2 J )  
and c = exp( -2K - J )  as 

, 1-b c =---- 
l + h - 2 ~  b' = 
1 +b+2c' 1 + b + 2 c '  (3) 

The line b + 2c = 1 is invariant under this transformation, and if there existed only one 
critical temperature this line would be the critical line. The Potts critical point and the 
critical point at K = 0 are both on this line. However, this line does not pass through 
the critical points found in (i) and (ii); these points are mapped into each other by the 
duality transformation. Symmetry considerations lead then to the conjecture that the 
critical line coincides with the line invariant under duality up to the Potts critical point, 
after which it branches into two curves which are mapped into each other by duality 
as shown in figure 1. 

I t  is remarkable that the eight-vertex model with weights a, b, c, d (in the notation of 
Kadanoff and Wegner 1971) is invariant under the same duality transformation as the 
ATM (Fan 1972). In particular, in case c = d this duality transformation in terms of the 
relative weights b, c (obtained by setting a = 1) is given again by (3). In the case of the 
eight-vertex model, however, the critical line coincides with the line b + 2c = 1 for 
b > 0, as can be seen from Baxter's famous exact solution (Baxter 1971). 

Further evidence in favour of a critical surface, shaped according to figure 1, is given 
by Wu and Lin (1974). They note that the mapping which, in general, transforms the 
ATM into a staggered eight-vertex model happens to map the line bAT+2cAT = 1 into 
the line b, ,+2c8 ,  = 1 of the normal eight-vertex model (with c = d)  in such a way that 

1 - 3bA, 
b,, = -. 

- bAT 
(4) 

Consequently the segment 3 < bAT < 1 of the line ~ A T + ~ ~ A T  = 1 corresponds to 
negative values of b,, on the line b,,+2c8, = 1 which are nor critical according to 
Baxter's solution. 
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Figure 1. Schematic plot of the critical lines for the ATM as expected from general considera- 
tions. The line b = c is the Potts axis. 

3. Renormalization group transformation 

A renormalization group transformation on the ATM can be defined by a slight general- 
ization of the method of Niemeyer and van Leeuwen (1974) developed for Ising models. 
Consider a unit square as an elementary cell and define a cell spin S associated with 
the configurations of the four site spins Si according to the following rules : 

(i) Associate with s’ all configurations for which the majority of spins point along S’. 
(ii) Associate with S’ with a weight W = all configurations for which two spins 

point along S’ and the remaining spins point in one other direction. 
(iii) Associate with S’ with a weight W = a all configurations for which all spins 

have different directions. 
Notice that this choice of S’ is not the only one possible, the present choice being motiv- 
ated by symmetry considerations?. The renormalization group transformation is now 
defined by 

( 5 )  exp( - H’JS;}) = n W(S(i, S j , ~ )  exp( - H{Sj , ,  1) 
SI., j 

where j numbers the cells and i = 1,4 numbers the sites in cell j. 
In first order in the cumulant expansion (Niemeyer and van Leeuwen 1974) new 

couplings are not generated and the renormalization group transformation takes the 
form 

I’ + 9 eZJ+ 2 e4K + 12 
+ 14 e2J+7  e4K+36+ 6 e -ZJ  

e 4 J + 4 K  

J‘  = 2 J  e 4 J + 4 K  ( 
I’ + 4  e2’ + 7 e4x + 12 

+14eZJ+7 e4K+36+6e-2J  
t Another possible choice of s’ based on the total cell magnetization would only imply invariance under 
rotations, whereas the present choice is invariant under arbitrary permutations. 
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4. Discussion 

Investigation of these transformations for J and K positive, in the parameter space of 
the relative weights b = exp( - 25) and c = exp( - 2K - J), leads to the following 
conclusions. 

The transformation possesses a total of seven fixed points of which three are stable, 
three are stable in one direction, and one, which is the fixed point located on the Potts 
axis, is unstable. A repeated application of the transformation ( 6 )  brings (almost all) 
points of .the parameter space close to one of the stable fixed points; this leads to a 
division of the parameter space into three regions, each attracted by one of the stable 
fixed points. The ridge lines which are the boundaries between these regions are the 
critical lines (Wilson 1972); each of them runs from the unstable fixed point on the 
Potts axis to one of the one-sided stable fixed points, giving rise to a branching of the 
critical surface at the Potts axis (see figure 2). Notice that the critical lines which meet 
at the branch point are all tangential to a direction which corresponds to the eigenvector 
with smallest eigenvalue at the unstable fixed point. 

C 

Figure 2. Critical lines for the ATM obtained from the first-order approximation to the re- 
normalization group equations. A represent fixed points; the number of eigenvalues 
larger than one is given in brackets. Broken lines correspond to arbitrary flow paths. 

The critical exponent a can be obtained from the eigenvalue 1. by the relation 
z = 2 - d In l/ln E. (where d is the dimension and I the scaling length). The results for the 
square and triangular lattices are collected in table 1. The fixed points which are one- 
sided stable are expected to be of Ising type and should therefore have a = 0; the values 
as obtained in first order deviate from this value by amounts normally found in this order. 
The fixed point on the Potts axis should give information on the critical behaviour of 
the Potts model of which little is known exactly. There is an interesting paper by Baxter 
(1973) on the n-component Potts model in which he finds that the transition is of first 
order for n > 4, which is, incidentally, the mean-field result for n 2 3, and of higher 
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Table 1. Values of the critical exponent a in first-order cumulant expansion. Roman 
numerals identify the fixed points in this table with the corresponding ones in figure 2. 

Fixed point Square Triangular 

K = CO (I) 0.17 - 0.25 
K = 0 (11) 0.06 0.18 
J = 0 (111) 0.17 0.1 5 
K = i J  (IV) 0.46 0.45 

order for n < 4. The present estimate of r = 0.5 confirms this prediction for n > 4. 
An interesting question remains whether c1 will change continuously along the critical 

line which connects the Potts critical point with the critical point at K = 0. It is this 
line which, as already noted, can be mapped into the eight-vertex model where a does 
change continuously ; however, no firm conclusions can be drawn from this equivalence 
since the temperature directions in the two models do not correspond. What can be 
said is that the same argument as presented by Kadanoff and Wegner (1971) (compare 
also van Leeuwen 1975) for the existence of a marginal operator at K = 0 holds also in 
the present case. The presence of such an operator at a fixed point is only a necessary 
but no sufficient condition for the existence of a line of fixed points, so that the question 
of the existence of a fixed line and the continuously varying exponents associated with 
it can as yet not be solved for the ATM. The perturbation theory does not easily yield 
clear indications for the existence of a fixed line; at the fixed point with K = 0 the 
eigenvalue along the direction which theoretically should be marginal (ie i. = 1) is still 
rather far from unity. 
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